1 Di Pietrantonj, C., et al., Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database of Systematic Reviews, 2020. 4(4): p. CD004407.
3 Moss, W.J., Measles. Lancet, 2017. 390(10111): p. 2490-2502.
4 Tarr, P.E., C. Gallmann, and U. Heininger, Masern in der Schweiz - Erkennung und Impfberatung. Swiss Medical Forum, 2008. 8(45): p. 868-872.
5 Schweizer National Fonds zur Förderung der wissenschaftlichen Forschung. Nationales Forschungsprogramm NFP74, Projekt Nr. 28: Impfskeptische Eltern und Ärzte in der Schweiz. [cited 2021 March 25]; Available from:
http://www.nfp74.ch/de/projekte/ambulante-versorgung/projekt-tarr.
6 Deml, M.J., et al., Determinants of vaccine hesitancy in Switzerland: study protocol of a mixed-methods national research programme. BMJ Open, 2019. 9(11): p. e032218.
7 Rosca, A., T. Krones, and N. Biller-Andorno, Shared decision making: patients have a right to be informed about possible treatment options and their risks and benefits. Swiss Med Wkly, 2020. 150: p. w20268.
8 Schweizerische Akademie der Medizinischen Wissenschaften. Autonomie in der Medizin: 7 Thesen. 2020 [cited 2021 April 30]; Available from:
https://www.samw.ch/dam/jcr:5d2f531d-d76c-4c2b-af35-4d8ef7db09ff/bericht_samw_autonomie_7_thesen.pdf.
9 Tarr, P.E., M.J. Deml, and B.M. Huber, Measles in Switzerland - progress made, but communication challenges lie ahead. Swiss Med Wkly, 2019. 149: p. w20105.
10 Deml, M.J., et al., Trust, affect, and choice in parents’ vaccination decision-making and health-care provider selection in Switzerland. Sociology of Health & Illness, 2021. 44(1): p. 41-58.
11 Deml, M.J., et al., ‘Problem patients and physicians’ failures’: What it means for doctors to counsel vaccine hesitant patients in Switzerland. Soc Sci Med, 2020. 255: p. 112946.
12 Deml, M.J., et al., “We treat humans, not herds!”: A qualitative study of complementary and alternative medicine (CAM) providers’ individualized approaches to vaccination in Switzerland. Soc Sci Med, 2019. 240: p. 112556.
13 Heinrichs, I. and T. Krones, Ethik und Impfen. Verbandszeitschrift der Kinderärzte Schweiz, 2021(1): p. 29-31 [cited 2021 April 3]; Available from:
https://epaper.vsdruck.ch/kinderaerzteschweiz/kis202101/28/.
14 Nationale Ethikkommission im Bereich der Humanmedizin NEK. Die Covid-19-Impfung: Ethische Erwägungen zu Grundsatzfragen und spezifischen Anwendungsbereichen. 2021 [cited 2022 Feb 3]; Available from:
https://www.nek-cne.admin.ch/inhalte/Themen/Stellungnahmen/NEK-stellungnahme_CovidImpfung_DE.pdf.
15 Bundesamt für Gesundheit. Durchimpfung von 2-, 8- und 16-jährigen Kindern in der Schweiz, 1999-2019. 2020 [cited 2021 March 22]; Available from:
https://www.bag.admin.ch/dam/bag/de/dokumente/mt/i-und-b/durchimpfung/tabelle-durchimpfung.xlsx.download.xlsx/tabelle-durchimpfung-200731-de.xlsx
16 Petersen, M.B., et al., Transparent communication about negative features of COVID-19 vaccines decreases acceptance but increases trust. Proceedings of the National Academy of Sciences, 2021. 118(29): p. e2024597118.
17 Deml, M.J., et al., Collaborating with Complementary and Alternative Medicine (CAM) Providers When Writing HPV Vaccine Review Articles. J Clin Med, 2020. 9(2): p. 1-15.
18 World Health Organization. Regional office for Europe. Eliminating measles and rubella: Framework for the verification process in the WHO European Region. 2014 [cited 2021 March 13]; Available from:
https://www.euro.who.int/en/health-topics/communicable-diseases/measles-and-rubella/publications/2014/eliminating-measles-and-rubella.-framework-for-the-verification-process-in-the-who-european-region.
19 Dietrich, L., et al., HPV-Impfung: Update 2019 für die Impfberatung. Swiss Medical Forum, 2019. 19(13-14): p. 220-226.
20 Dietrich, L., et al., Grippeimpfung: Kritische Beurteilung und praktische Empfehlungen. Primary and Hospital Care, 2021. 21(2): p. 52-59.
21 Bundesamt für Gesundheit, Die Masernepidemie breitet sich noch immer in der Schweiz aus. BAG Bulletin, 2007(38): p. 691-692.
22 Notter, J., S. Ehrenzeller, and P. Tarr. Empfehlungen für Impfungen sowie zur Verhütung und zum Ausbruchsmanagement von übertragbaren Krankheiten in den Asylzentren des Bundes und den Kollektivunterkünften der Kantone. 2018 [cited 2021 March 2]; Available from:
https://www.bag.admin.ch/dam/bag/de/dokumente/mt/i-und-i/gesundheitsversorgung-asyl/empfehlungen-impfungen-ausbruchsmanagement-asyl.pdf.download.pdf/empfehlungen-impfungen-ausbruchsmanagement-asyl-de.pdf.
23 Strebel, P.M. and W.A. Orenstein, Measles. New England Journal of Medicine, 2019. 381(4): p. 349-357.
26 Leung, N.H.L., Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol, 2021. 19(8): p. 528-545.
27 Centers for Disease Control and Prevention. Pinkbook Measles. 2015 [cited 2021 March 5]; Available from:
https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/meas.pdf
28 Centers for Disease Control and Prevention. Transmission of Measles. 2020 [cited 2021 June 7]; Available from:
https://www.cdc.gov/measles/transmission.html.
29 Rodgers, D.V., et al., High attack rates and case fatality during a measles outbreak in groups with religious exemption to vaccination. Pediatr Infect Dis J, 1993. 12(4): p. 288-92.
30 Top, F.H., Measles in Detroit, 1935 -I, Factors Influencing the Secondary Attack Rate Among Susceptibles at Risk. Am J Public Health Nations Health, 1938. 28(8): p. 935-43.
31 Simpson, R.E., Infectiousness of communicable diseases in the household (measles, chickenpox, and mumps). Lancet, 1952. 2(6734): p. 549-54.
32 Dietrich, L., et al., Covid-19, Influenza und grippeähnliche Erkrankungen. Primary and Hospital Care, 2021. 21(1): p. 16-20.
33 Heininger, U. and J.F. Seward, Varicella. Lancet, 2006. 368(9544): p. 1365-76.
34 Papenburg, J., et al., Household transmission of the 2009 pandemic A/H1N1 influenza virus: elevated laboratory-confirmed secondary attack rates and evidence of asymptomatic infections. Clin Infect Dis, 2010. 51(9): p. 1033-41.
35 Tsang, T.K., et al., Influenza A Virus Shedding and Infectivity in Households. J Infect Dis, 2015. 212(9): p. 1420-8.
36 Tsang, T.K., et al., Household Transmission of Influenza Virus. Trends Microbiol, 2016. 24(2): p. 123-133.
37 Bundesamt für Gesundheit. Masern: Antworten auf häufig gestellte Fragen. 2019 [cited 2021 February 15]; Available from:
https://www.bag.admin.ch/dam/bag/de/dokumente/mt/infektionskrankheiten/masern/masern-faq.pdf.download.pdf/faq-masern-de.pdf.
39 Muscat, M., et al., The measles outbreak in Bulgaria, 2009-2011: An epidemiological assessment and lessons learnt. Euro Surveill, 2016. 21(9): p. 30152.
40 Portnoy, A., et al., Estimates of case-fatality ratios of measles in low-income and middle-income countries: a systematic review and modelling analysis. The Lancet Global Health, 2019. 7(4): p. e472-e481.
41 Unicef. As measles deaths in the Democratic Republic of the Congo top 4,000, UNICEF rushes medical kits to health centers and vaccinates thousands more children. 2019 [cited 2021 June 7]; Available from:
https://www.unicef.org/press-releases/measles-deaths-democratic-republic-congo-top-4000-unicef-rushes-medical-kits-health.
43 Jent, P., et al., Fatal Measles Virus Infection After Rituximab-Containing Chemotherapy in a Previously Vaccinated Patient. Open Forum Infectious Diseases, 2018. 5(11): p. 244.
44 Kaplan, L.J., et al., Severe measles in immunocompromised patients. Jama, 1992. 267(9): p. 1237-41.
45 Miller, D.L., Frequency of complications of measles, 1963. Report on a national inquiry by the Public Health Laboratory Service in collaboration with the Society of Medical Officers of Health. Br Med J, 1964. 2(5401): p. 75-8.
46 Béraud, G., et al., Resurgence risk for measles, mumps and rubella in France in 2018 and 2020. Euro Surveill, 2018. 23(25).
47 European Centre for Disease Prevention and Control. Risk assessment: Who is at risk of measles in the EU/EEA? 2019 [cited 2021 March 24]; Available from:
https://www.ecdc.europa.eu/en/publications-data/risk-assessment-measles-eu-eea-2019.
48 Gesellschaft Anthroposophischer Ärzte in Deutschland (GAÄD). Merkblätter Anthroposophische Medizin: Masern. 7. Auflage, Mai 2019 [cited 2021 March 4]; Available from:
https://www.gaed.de/merkblaetter/masern.html.
49 impfinfo.de - Beiträge zu einer differenzierten Impfentscheidung. Die Trumpisierung der Impfdiskussion - ein Faktencheck (Update 27.02.2020). 2020 [cited 2021 March 4]; Available from:
https://www.impf-info.de/die-impfentscheidung/die-diskussion-über-die-impfpflicht/272-die-trumpisierung-der-impfdiskussion.html.
50 Wong, R.D. and M.B. Goetz, Clinical and laboratory features of measles in hospitalized adults. Am J Med, 1993. 95(4): p. 377-83.
51 Perry, R.T. and N.A. Halsey, The Clinical Significance of Measles: A Review. The Journal of Infectious Diseases, 2004. 189(1): p. 4-16.
52 World Health Organization. Weekly epidemiological record. Measles vaccines: WHO position paper - April 2017. 2017 [cited 2021 March 5]; Available from:
https://apps.who.int/iris/bitstream/handle/10665/255149/WER9217.pdf;jsessionid=3172C69947C54EB87EBA2AFFF6C1FD95?sequence=1
53 Robert Koch Institut. Epidemiologisches Bulletin. Überblick über die Epidemiologie der Masern in 2014 und aktuelle Situation in 2015 in Deutschland. 2015 [cited 2021 March 5]; Available from:
https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2015/Ausgaben/10_15.pdf?__blob=publicationFile.
54 Matysiak-Klose, D., Hot Spot: Epidemiologie der Masern und Röteln in Deutschland und Europa. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 2013. 56(9): p. 1231-1237.
55 Mina, M.J., et al., Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019. 366(6465): p. 599-606.
56 Mina, M.J., et al., Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015. 348(6235): p. 694-9.
57 Bester, J.C., Measles and Measles Vaccination: A Review. JAMA Pediatrics, 2016. 170(12): p. 1209-1215.
58 Robert Koch Institut. Antworten auf häufig gestellte Fragen zur Schutzimpfung gegen Masern. 2020 [cited 2021 March 4]; Available from:
https://www.rki.de/SharedDocs/FAQ/Impfen/MMR/FAQ_Uebersicht_MSG.html
59 Frederick, E., How measles causes the body to ‘forget’ past infections. Science, 2019. 366(6465): p. 560-561.
60 de Vries, R.D., et al., Measles immune suppression: lessons from the macaque model. PLoS Pathog, 2012. 8(8): p. e1002885.
61 Petrova, V.N., et al., Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci Immunol, 2019. 4(41): p. eaay6125.
62 Wesemann, D.R., Game of clones: How measles remodels the B cell landscape. Sci Immunol, 2019. 4(41): p. eaaz4195.
63 Behrens, L., J.D. Cherry, and U. Heininger, The Susceptibility to Other Infectious Diseases Following Measles During a Three Year Observation Period in Switzerland. Pediatr Infect Dis J, 2020. 39(6): p. 478-482.
64 Chiba, M.E., et al., Measles infection in pregnancy. J Infect, 2003. 47(1): p. 40-4.
65 Kobayashi, K., et al., Fetal growth restriction associated with measles virus infection during pregnancy. J Perinat Med, 2005. 33(1): p. 67-8.
66 Díaz-Pollán, B., et al., [Measles in a 12 weeks pregnant woman]. Enferm Infecc Microbiol Clin, 2013. 31(2): p. 121-2.
67 Eberhart-Phillips, J.E., et al., Measles in pregnancy: a descriptive study of 58 cases. Obstet Gynecol, 1993. 82(5): p. 797-801.
68 Atmar, R.L., J.A. Englund, and H. Hammill, Complications of measles during pregnancy. Clin Infect Dis, 1992. 14(1): p. 217-26.
69 Bansal, J. and A. Hameed, Measles in pregnancy. BMJ Case Rep, 2019. 12(5): p. e228781.
70 Kamaci, M., C.G. Zorlu, and A. Belhan, Measles in pregnancy. Acta Obstet Gynecol Scand, 1996. 75(3): p. 307-9.
71 Pata, D., et al., Congenital Measles: A Case Report and Literature Review. Journal of Clinical Case Reports, 2018., 8:12 DOI: 10.4172/2165-7920.10001196.
72 Rasmussen, S.A. and D.J. Jamieson, What Obstetric Health Care Providers Need to Know About Measles and Pregnancy. Obstet Gynecol, 2015. 126(1): p. 163-70.
73 Moss, W.J., et al., Prospective study of measles in hospitalized, human immunodeficiency virus (HIV)-infected and HIV-uninfected children in Zambia. Clin Infect Dis, 2002. 35(2): p. 189-96.
74 Rafat, C., et al., Severe measles infection: the spectrum of disease in 36 critically ill adult patients. Medicine, 2013. 92(5): p. 257.
75 Permar, S.R., et al., Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys. J Virol, 2003. 77(7): p. 4396-400.
76 Goebel, M.W., M.K. Michael, and M.M. Glöckler, Vom Sinn des Fiebers, in Kindersprechstunde: Ein medizinisch-pädagogischer Ratgeber. 2018, Verlag Urachhaus: Stuttgart, 21. Auflage. p. 79-83.
77 White, C.C., J.P. Koplan, and W.A. Orenstein, Benefits, risks and costs of immunization for measles, mumps and rubella. Am J Public Health, 1985. 75(7): p. 739-44.
78 pharmaSuisse. Fragen und Antworten zum Impfen als Standard-Dienstleistung in der Apotheke. 2017 [cited 2021 March 25]; Available from:
https://www.pharmasuisse.org/data/docs/de/8494/Fragen-und-Antworten-Impfen-Medienarbeit-DE.pdf?v=1.0.
79 De Serres, G., et al., Higher Risk of Measles When the First Dose of a 2-Dose Schedule of Measles Vaccine Is Given at 12–14 Months Versus 15 Months of Age. Clinical Infectious Diseases, 2012. 55(3): p. 394-402.
80 Poethko-Müller, C. and A. Mankertz, Sero-epidemiology of measles-specific IgG antibodies and predictive factors for low or missing titres in a German population-based cross-sectional study in children and adolescents (KiGGS). Vaccine, 2011. 29(45): p. 7949-59.
81 Schenk, J., et al., Immunogenicity and persistence of trivalent measles, mumps, and rubella vaccines: a systematic review and meta-analysis. Lancet Infect Dis, 2021. 21(2): p. 286-295.
82 De Serres, G., et al., Protection after two doses of measles vaccine is independent of interval between doses. J Infect Dis, 1999. 180(1): p. 187-90.
83 Paunio, M., et al., Twice vaccinated recipients are better protected against epidemic measles than are single dose recipients of measles containing vaccine. J Epidemiol Community Health, 1999. 53(3): p. 173-8.
84 McKee, A., M.J. Ferrari, and K. Shea, Correlation between measles vaccine doses: implications for the maintenance of elimination. Epidemiol Infect, 2018. 146(4): p. 468-475.
85 Yeung, L.F., et al., A limited measles outbreak in a highly vaccinated US boarding school. Pediatrics, 2005. 116(6): p. 1287-91.
86 Sutcliffe, P.A. and E. Rea, Outbreak of measles in a highly vaccinated secondary school population. Cmaj, 1996. 155(10): p. 1407-13.
87 Seward, J.F. and W.A. Orenstein, Editorial commentary: A rare event: a measles outbreak in a population with high 2-dose measles vaccine coverage. Clin Infect Dis, 2012. 55(3): p. 403-5.
88 de Serres, G., et al., Effectiveness of vaccination at 6 to 11 months of age during an outbreak of measles. Pediatrics, 1996. 97(2): p. 232-5.
89 Hughes, S.L., et al., The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness - A systematic review. Vaccine, 2020. 38(3): p. 460-469.
90 Avramovich, E., et al., Measles Outbreak in a Highly Vaccinated Population - Israel, July-August 2017. MMWR Morb Mortal Wkly Rep, 2018. 67(42): p. 1186-1188.
91 LeBaron, C.W., et al., Persistence of measles antibodies after 2 doses of measles vaccine in a postelimination environment. Arch Pediatr Adolesc Med, 2007. 161(3): p. 294-301.
92 Aaby, P., et al., Vaccinated children get milder measles infection: a community study from Guinea-Bissau. J Infect Dis, 1986. 154(5): p. 858-63.
93 Rosen, J.B., et al., Outbreak of measles among persons with prior evidence of immunity, New York City, 2011. Clin Infect Dis, 2014. 58(9): p. 1205-10.
94 Cherry, J.D. and M. Zahn, Clinical Characteristics of Measles in Previously Vaccinated and Unvaccinated Patients in California. Clin Infect Dis, 2018. 67(9): p. 1315-1319.
95 Artimos de Oliveira, S., et al., Atypical measles in a patient twice vaccinated against measles: transmission from an unvaccinated household contact. Vaccine, 2000. 19(9-10): p. 1093-6.
96 Gibney, K.B., et al., Emergence of Attenuated Measles Illness Among IgG-positive/IgM-negative Measles Cases: Victoria, Australia, 2008-2017. Clin Infect Dis, 2020. 70(6): p. 1060-1067.
97 Hahné, S.J.M., et al., Measles Outbreak Among Previously Immunized Healthcare Workers, the Netherlands, 2014. The Journal of Infectious Diseases, 2016. 214(12): p. 1980-1986.
98 Rota, J.S., et al., Two case studies of modified measles in vaccinated physicians exposed to primary measles cases: high risk of infection but low risk of transmission. J Infect Dis, 2011. 204 Suppl 1: p. S559-63.
99 van den Hoek, A., et al., Two cases of mild IgM-negative measles in previously vaccinated adults, the Netherlands, April and July 2011. Euro Surveill, 2011. 16(48).
100 Bundesamt für Gesundheit. Masern verursachen 2 Todesfälle. 2019 [cited 2021 April 7]; Available from:
https://www.bag.admin.ch/bag/de/home/das-bag/aktuell/news/masern-verursachen-zwei-todesfaelle.html
101 Koch, D., Measles outbreaks: plea for a regular check of the vaccination booklet. Swiss Med Wkly, 2019. 149: p. w20106.
102 Casulo, C., J. Maragulia, and A.D. Zelenetz, Incidence of hypogammaglobulinemia in patients receiving rituximab and the use of intravenous immunoglobulin for recurrent infections. Clin Lymphoma Myeloma Leuk, 2013. 13(2): p. 106-11.
103 Takada, K., et al., Lymphocyte depletion with fludarabine in patients with psoriatic arthritis: clinical and immunological effects. Ann Rheum Dis, 2003. 62(11): p. 1112-5.
104 van der Kolk, L.E., et al., Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood, 2002. 100(6): p. 2257-9.
105 Flanagan, K.L., et al., Heterologous (“nonspecific”) and sex-differential effects of vaccines: epidemiology, clinical trials, and emerging immunologic mechanisms. Clin Infect Dis, 2013. 57(2): p. 283-9.
106 Saeed, S., et al., Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014. 345(6204): p. 1251086.
107 Aaby, P., et al., The survival benefit of measles immunization may not be explained entirely by the prevention of measles disease: a community study from rural Bangladesh. Int J Epidemiol, 2003. 32(1): p. 106-16.
108 Kristensen, I., P. Aaby, and H. Jensen, Routine vaccinations and child survival: follow up study in Guinea-Bissau, West Africa. Bmj, 2000. 321(7274): p. 1435-8.
109 Shann, F., Nonspecific effects of vaccines and the reduction of mortality in children. Clin Ther, 2013. 35(2): p. 109-14.
110 Aaby, P., T.R. Kollmann, and C.S. Benn, Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol, 2014. 15(10): p. 895-9.
111 Aaby, P., et al., Non-specific effects of standard measles vaccine at 4.5 and 9 months of age on childhood mortality: randomised controlled trial. Bmj, 2010. 341: p. c6495.
112 Clipet-Jensen, C., et al., Out-of-Sequence Vaccinations With Measles Vaccine and Diphtheria-Tetanus-Pertussis Vaccine: A Reanalysis of Demographic Surveillance Data From Rural Bangladesh. Clin Infect Dis, 2021. 72(8): p. 1429-1436.
113 Shann, F., A Live-Vaccine-Last Schedule: Saving an Extra Million Lives a Year? Clin Infect Dis, 2021. 72(8): p. 1437-1439.
114 Cutts, F.T. and R. Steinglass, Should measles be eradicated? Bmj, 1998. 316(7133): p. 765-7.
115 Albonico, H., et al. Schweizerische Impfkampagne gegen Masern, Mumps und Röteln. Ärztliche Bedenken zur Ausrottungs-Strategie (Teil 1). 1994 [cited 2021 May 3]; Available from:
http://www.impfo.ch/pdf-dokumente/szgmmmrkampagne1.pdf
116 Richard, J.L., et al., Approaching measles elimination in Switzerland: changing epidemiology 2007-2018. Swiss Med Wkly, 2019. 149: p. w20102.
117 Hens, N., et al., Assessing the risk of measles resurgence in a highly vaccinated population: Belgium anno 2013. Euro Surveill, 2015. 20(1): p. 20998.
118 Johnson, C.E., et al., Measles vaccine immunogenicity and antibody persistence in 12 vs 15-month old infants. Vaccine, 2000. 18(22): p. 2411-5.
119 Waaijenborg, S., et al., Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J Infect Dis, 2013. 208(1): p. 10-6.
120 Leuridan, E., et al., Early waning of maternal measles antibodies in era of measles elimination: longitudinal study. Bmj, 2010. 340: p. c1626.
121 Leuridan, E. and P. Van Damme, Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns. Vaccine, 2007. 25(34): p. 6296-304.
124 swissinfo.ch. Ist die Masern-Situation in der Schweiz wirklich so schlimm? 2019 [cited 2021 March 15]; Available from:
https://www.swissinfo.ch/ger/masern_ist-die-masern-situation-in-der-schweiz-wirklich-so-schlimm-/44951408.
126 Rosca, A., et al., Gemeinsame Entscheidungsfindung: keine Modeerscheinung. Schweizerische Ärztezeitung, 2020. 101(39): p. 1239-1241.
127 Gans, H.A., et al., Deficiency of the humoral immune response to measles vaccine in infants immunized at age 6 months. Jama, 1998. 280(6): p. 527-32.
128 Carazo Perez, S., et al., Reduced Antibody Response to Infant Measles Vaccination: Effects Based on Type and Timing of the First Vaccine Dose Persist After the Second Dose. Clin Infect Dis, 2017. 65(7): p. 1094-1102.
129 Lalwani, S., et al., Immunogenicity and safety of early vaccination with two doses of a combined measles-mumps-rubella-varicella vaccine in healthy Indian children from 9 months of age: a phase III, randomised, non-inferiority trial. BMJ Open, 2015. 5(9): p. e007202.
130 Defay, F., et al., Measles in children vaccinated with 2 doses of MMR. Pediatrics, 2013. 132(5): p. e1126-33.
131 Gans, H., et al., Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine, 2003. 21(24): p. 3398-405.
132 Gans, H., et al., Immune responses to measles and mumps vaccination of infants at 6, 9, and 12 months. J Infect Dis, 2001. 184(7): p. 817-26.
133 Plotkin, S.A., Correlates of protection induced by vaccination. Clin Vaccine Immunol, 2010. 17(7): p. 1055-65.
134 Gans, H.A., et al., Humoral and cell-mediated immune responses to an early 2-dose measles vaccination regimen in the United States. J Infect Dis, 2004. 190(1): p. 83-90.
135 Carazo, S., et al., Effect of age at vaccination on the measles vaccine effectiveness and immunogenicity: systematic review and meta-analysis. BMC Infect Dis, 2020. 20(1): p. 251.
136 Quinto, C.B., To vaccinate, or not to vaccinate…? Schweizerische Ärztezeitung, 2020. 101(49): p. 1637.
137 Giubilini, A. and J. Savulescu, Vaccination, Risks, and Freedom: The Seat Belt Analogy. Public Health Ethics, 2019. 12(3): p. 237-249.
138 Institute of Medicine, The Childhood Immunization Schedule and Safety: Stakeholder Concerns, Scientific Evidence, and Future Studies. 2013, Washington, DC: The National Academies Press. 236.
139 European Medicines Agency. Priorix. Article 30 referral. Annex III. 2012 [cited 2021 April 13]; Available from:
https://www.ema.europa.eu/documents/referral/priorix-article-30-referral-annex-iii_en.pdf.
140 Kowalzik, F., J. Faber, and M. Knuf, MMR and MMRV vaccines. Vaccine, 2018. 36(36): p. 5402-5407.
141 Oluwabusi, T. and S.K. Sood, Update on the management of simple febrile seizures: emphasis on minimal intervention. Curr Opin Pediatr, 2012. 24(2): p. 259-65.
142 Maglione, M.A., et al., Safety of Vaccines Used for Routine Immunization of US Children: A Systematic Review. Pediatrics, 2014. 134(2): p. 325.
143 Ma, S.-J., et al., Risk of febrile seizure after measles–mumps–rubella–varicella vaccine: A systematic review and meta-analysis. Vaccine, 2015. 33(31): p. 3636-3649.
144 McLean, H.Q., et al., Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). Morbidity and Mortality Weekly Report: Recommendations and Reports, 2013. 62(4): p. 1-34.
145 Belgamwar, R.B., S. Prasad, and P. Appaya, Measles, mumps, rubella vaccine induced subacute sclerosing panencephalitis. J Indian Med Assoc, 1997. 95(11): p. 594.
146 Cavlek, T.V., et al., Subacute sclerosing panencephalitis--the continuing threat. Coll Antropol, 2006. 30(4): p. 959-63.
147 Gualberto, F.A., et al., Fulminant encephalitis associated with a vaccine strain of rubella virus. J Clin Virol, 2013. 58(4): p. 737-40.
148 Watson, J.G., A child of 3 years who developed an encephalitic reaction to MMR (mumps, measles, rubella) immunisation at age 15 months. Int J Pediatr Otorhinolaryngol, 1990. 19(2): p. 189-90.
149 Jefferson, T., et al., Unintended events following immunization with MMR: a systematic review. Vaccine, 2003. 21(25): p. 3954-3960.
150 Lievano, F., et al., Measles, mumps, and rubella virus vaccine (M-M-R™II): a review of 32 years of clinical and postmarketing experience. Vaccine, 2012. 30(48): p. 6918-26.
151 Schaad, U.B., Pädiatrische Infektiologie. 1993, Hans Marseille Verlag: München, 1. Auflage.
152 Griffin, D.E., Measles virus and the nervous system, in Handbook of Clinical Neurology, A.C. Tselis and J. Booss, Editors. 2014, Elsevier. p. 577-590.
153 Tidstrom, B., Complications in measles with special reference to encephalitis. Acta Med Scand, 1968. 184(5): p. 411-5.
154 Gibbons, J.L., H.G. Miller, and J.B. Stanton, Para-infectious encephalomyelitis and related syndromes; a critical review of the neurological complications of certain specific fevers. Q J Med, 1956. 25(100): p. 427-505.
155 Spektrum.de. Masernencephalitis. 2000 [cited 2021 March 24]; Available from:
https://www.spektrum.de/lexikon/neurowissenschaft/masernencephalitis/7440.
156 Duke, T. and C.S. Mgone, Measles: not just another viral exanthem. Lancet, 2003. 361(9359): p. 763-73.
157 Cole, A.J., et al., Case records of the Massachusetts General Hospital. Case 24-2007. A 20-year-old pregnant woman with altered mental status. N Engl J Med, 2007. 357(6): p. 589-600.
158 Schönberger, K., et al., Epidemiology of subacute sclerosing panencephalitis (SSPE) in Germany from 2003 to 2009: a risk estimation. PLoS One, 2013. 8(7): p. e68909.
159 Bellini, W.J., et al., Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis, 2005. 192(10): p. 1686-93.
160 Buchanan, R. and D.J. Bonthius, Measles virus and associated central nervous system sequelae. Semin Pediatr Neurol, 2012. 19(3): p. 107-14.
161 Campbell, H., et al., Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol, 2007. 36(6): p. 1334-48.
162 Fombonne, E., et al., Pervasive developmental disorders in Montreal, Quebec, Canada: prevalence and links with immunizations. Pediatrics, 2006. 118(1): p. e139-50.
163 Honda, H., Y. Shimizu, and M. Rutter, No effect of MMR withdrawal on the incidence of autism: a total population study. J Child Psychol Psychiatry, 2005. 46(6): p. 572-9.
164 Hviid, A., et al., Measles, Mumps, Rubella Vaccination and Autism: A Nationwide Cohort Study. Annals of Internal Medicine, 2019. 170(8): p. 513-520.
165 Wilson, K., et al., Association of Autistic Spectrum Disorder and the Measles, Mumps, and Rubella Vaccine: A Systematic Review of Current Epidemiological Evidence. Archives of Pediatrics & Adolescent Medicine, 2003. 157(7): p. 628-634.
166 DeStefano, F. and T.T. Shimabukuro, The MMR Vaccine and Autism. Annual review of virology, 2019. 6(1): p. 585-600.
167 Flaherty, D.K., The vaccine-autism connection: a public health crisis caused by unethical medical practices and fraudulent science. Ann Pharmacother, 2011. 45(10): p. 1302-4.
168 Godlee, F., J. Smith, and H. Marcovitch, Wakefield’s article linking MMR vaccine and autism was fraudulent. Bmj, 2011. 342: p. c7452.
169 Conis, E., Vaccines, Pesticides, and Narratives of Exposure and Evidence. Canadian Bulletin of Medical History, 2017. 34(2): p. 297-326.
170 Bundesamt für Gesundheit und Eidgenössische Kommission für Impffragen. Schweizerischer Impfplan 2021. Richtlinien und Empfehlungen. 2021 [cited 2021 March 13]; Available from:
https://www.bag.admin.ch/dam/bag/de/dokumente/mt/i-und-b/richtlinien-empfehlungen/allgemeine-empfehlungen/schweizerischer-impfplan.pdf.download.pdf/schweizerischer-impfplan-de.pdf.
171 Bar-Oz, B., et al., Pregnancy outcome following rubella vaccination: a prospective controlled study. Am J Med Genet A, 2004. 130a(1): p. 52-4.
172 D’Acremont, V., S. Tremblay, and B. Genton, Impact of vaccines given during pregnancy on the offspring of women consulting a travel clinic: a longitudinal study. J Travel Med, 2008. 15(2): p. 77-81.
173 Heininger, U., Masernimpfung in der Praxis. Zehn wichtige Fragen und Antworten zur MMR-Impfung. Ars Medici, 2018(Dossier IX): p. 3-5 [cited 2021 March 23]; Available from:
https://www.rosenfluh.ch/media/arsmedici-dossier/2018/09/Masernimpfung-in-der-Praxis.pdf.
174 Keller-Stanislawski, B., et al., Safety of immunization during pregnancy: a review of the evidence of selected inactivated and live attenuated vaccines. Vaccine, 2014. 32(52): p. 7057-64.
175 White, S.J., et al., Measles, mumps, and rubella. Clin Obstet Gynecol, 2012. 55(2): p. 550-9.
176 Pearce, A., et al., Factors associated with uptake of measles, mumps, and rubella vaccine (MMR) and use of single antigen vaccines in a contemporary UK cohort: prospective cohort study. Bmj, 2008. 336(7647): p. 754-7.
177 The College of Physicians of Philadelphia. The History of Vaccines. 2021 [cited 2021 March 31]; Available from:
https://www.historyofvaccines.org/timeline#EVT_100824.
178 Centers for Disease Control and Prevention. Q&As about Monovalent M-M-R Vaccines. 2009 [cited 2021 March 21]; Available from:
https://www.cdc.gov/vaccines/hcp/clinical-resources/mmr-faq-12-17-08.html.
179 Gesundheitstipp. Impfzwang durch die Hintertüre. 2003 [cited 2021 March 31]; Available from:
https://www.gesundheitstipp.ch/artikel/artikeldetail/impfzwang-durch-die-hintertuere/.
180 Bundesamt für Gesundheit. Das neue Epidemiegesetz. Fragen und Antworten. 2013 [cited 2021 March 25]; Available from:
https://www.bag.admin.ch/dam/bag/de/dokumente/mt/spb/epidemiengesetz-faq.pdf.download.pdf/epidemiengesetz-faq.pdf.
181 Donovan, J.L. and D.R. Blake, Patient non-compliance: deviance or reasoned decision-making? Soc Sci Med, 1992. 34(5): p. 507-13.
182 Guardian, T. Labelling anti-vaxxers as bad parents doesn’t help – it just leads to more distrust in science. 2019 [cited 2021 April 2]; Available from:
https://www.theguardian.com/commentisfree/2019/may/13/labelling-anti-vaxxers-as-bad-parents-doesnt-help-it-just-leads-to-more-distrust-in-science.
183 Ames, H.M., C. Glenton, and S. Lewin, Parents’ and informal caregivers’ views and experiences of communication about routine childhood vaccination: a synthesis of qualitative evidence. Cochrane Database Syst Rev, 2017. 2(2): p. Cd011787.
184 Benin, A.L., et al., Qualitative analysis of mothers’ decision-making about vaccines for infants: the importance of trust. Pediatrics, 2006. 117(5): p. 1532-41.
185 Brown, K.F., et al., U.K. parents’ decision-making about measles-mumps-rubella (MMR) vaccine 10 years after the MMR-autism controversy: a qualitative analysis. Vaccine, 2012. 30(10): p. 1855-64.
186 Peretti-Watel, P., et al., ‘I Think I Made The Right Decision … I Hope I’m Not Wrong’. Vaccine hesitancy, commitment and trust among parents of young children. Sociol Health Illn, 2019. 41(6): p. 1192-1206.
188 International Federation of Anthroposophic Medical Associations (IVAA). Anthroposophic Medicine Statement on Vaccination. 15. April 2019. 2019 [cited 2021 March 25]; Available from:
https://www.ivaa.info/latest-news/article/article/anthroposophic-medicine-statement-on-vaccination/.
189 Vereinigung anthroposophisch orientierter Ärzte in der Schweiz (VAOAS). Stellungnahme der VAOAS zu Impfungen. 5. Mai 2019. 2019 [cited 2021 March 25]; Available from:
https://vaoas.ch/wp-content/uploads/2019/05/vaoas_stellungnahme_impfungen.pdf.
190 Schweizerischer Verein Homöopathischer Ärztinnen und Ärzte (SVHA). Stellungnahme zu den Impfungen. 2. Mai 2019. 2019 [cited 2021 March 25]; Available from:
https://www.svha.ch/uploaded/files/Stellungnahme_Impfungen_2019.pdf
191 Manca, T., “One of the greatest medical success stories:” Physicians and nurses’ small stories about vaccine knowledge and anxieties. Soc Sci Med, 2018. 196: p. 182-189.
192 Spektrum.de. Masernausbruch an einer Waldorfschule in Essen. 2010 [cited 2021 April 1]; Available from:
https://scilogs.spektrum.de/detritus/masernausbruch-an-einer-waldorfschule-in-essen/.
193 Tagesanzeiger. Masern-Epidemie an Steiner-Schule. 2019 [cited 2021 April 1]; Available from:
https://www.tagesanzeiger.ch/panorama/vermischtes/masernepidemie-an-steinerschule/story/30865629.
194 tagblatt. Zwangsschulfrei wegen Masern: Schon 12 Fälle an Steiner-Schule – warum das kein Zufall ist. 2019 [cited 2021 June 7]; Available from:
https://www.tagblatt.ch/leben/gesundheit/zwangsschulfrei-wegen-masern-schon-12-falle-an-steiner-schule-warum-das-kein-zufall-ist-ld.1345760.
196 Infovac. Herdenimmunität. 2020 [cited 2021 April 1]; Available from:
https://www.infovac.ch/de/faq/herdenimmunitaet.
197 Tagblatt. Impfpflicht in der Kita: Frauenfelder Kindertagesstätte weist ungeimpfte Kinder ab. 2019 [cited 2021 April 1]; Available from:
https://www.tagblatt.ch/ostschweiz/frauenfeld/kindertagesstaetten-weisen-ungeimpfte-kinder-ab-auch-eine-kita-in-frauenfeld-ld.1126000.
198 Neue Zürcher Zeitung. Kita- und Schulkinder müssen gegen Masern geimpft werden. 2019 [cited 2021 April 1]; Available from:
https://www.nzz.ch/international/impfpflicht-in-deutschland-beschlossen-ld.1522050?reduced=true.
199 Top Online. «Das Thema Impfen geht die Kita gar nichts an». 2019 [cited 2021 April 1]; Available from:
https://www.toponline.ch/news/zuerich/detail/news/das-thema-impfen-geht-die-kita-gar-nichts-an-00113305/.
200 Salmon, D.A., et al., Compulsory vaccination and conscientious or philosophical exemptions: past, present, and future. Lancet, 2006. 367(9508): p. 436-42.
201 Vermeersch, E., Individual rights versus societal duties. Vaccine, 1999. 17 Suppl 3: p. S14-7.
202 Attwell, K. and M.C. Navin, Childhood Vaccination Mandates: Scope, Sanctions, Severity, Selectivity, and Salience. Milbank Q, 2019. 97(4): p. 978-1014.
203 Navin, M.C. and K. Attwell, Vaccine mandates, value pluralism, and policy diversity. Bioethics, 2019. 33(9): p. 1042-1049.
204 Benin, A.L., et al., Qualitative Analysis of Mothers; Decision-Making About Vaccines for Infants: The Importance of Trust. Pediatrics, 2006. 117(5): p. 1532.
205 Browwn, K.F., et al., UK parents’ decision-making about measles–mumps–rubella (MMR) vaccine 10 years after the MMR-autism controversy: A qualitative analysis. Vaccine, 2012. 30(10): p. 1855-1864.
206 Verger, P., et al., Vaccine Hesitancy Among General Practitioners and Its Determinants During Controversies: A National Cross-sectional Survey in France. E Bio Medicine, 2015. 2(8): p. 891-897.
209 pharmasuisse. Liste der Impfungen nach Kanton. 2021 [cited 2021 April 1]; Available from:
https://impfapotheke.ch/assets/impfapotheken/liste-der-impfungen-nach-kanton-210317-de.pdf.
210 Jusufoska, M., et al., “Vaccination needs to be easy for the people, right ?” - A Qualitative Study Examining the Roles of Physicians and Pharmacists Regarding Vaccination Counseling and Administration in Switzerland. BMJ Open, 2021, 11(12):e053163. doi: 10.1136/bmjopen-2021-053163.
211 Tolic, J., et al., Pharmacists’ roles in addressing vaccine hesitancy and underimmunization in Switzerland: A qualitative study. BMJ Open, in Revision.
212 Foederatio Pharmaceutica Helvetiae. Fähigkeitsprogramm FPH Impfen und Blutentnahme. 2015 [cited 2021 April 1]; Available from:
https://www.pharmasuisse.org/data/docs/de/23096/Fähigkeitsprogramm-FPH-Impfen-und-Blutentnahme.pdf?v=1.0
Mit der Kommentarfunktion bieten wir Raum für einen offenen und kritischen Fachaustausch. Dieser steht allen SHW Beta Abonnentinnen und Abonnenten offen. Wir publizieren Kommentare solange sie unseren Richtlinien entsprechen.