All inpatients with a length of stay of ≥24 h, discharged from the Brigham and Women’s Hospital, a large tertiary care hospital in Boston, MA, between January 2009 and April 2014 were searched for ICD-9 diagnosis codes of acute venous thrombosis or pulmonary embolism. Patients were included who had VTE in the admitting diagnosis field – defined as VTE present on admission – or in one of up to 50 discharge diagnoses. Of those, only patients who received heparin, dalteparin, enoxaparin, alteplase, rivaroxaban or fondaparinux were considered, and the time from admission to the first order was calculated for each drug. Additionally included predictors were: dose information, demographics (age, gender, race, language), length of stay, admission service, discharge service, transfer destination of the patient after discharge, and whether the patient was alive or died during the hospitalization or within 30 days after discharge. A single tree and two random forests (each with 5000 trees) were generated to analyze the predictors and to assess the predictive power of the chosen approach. Since medication orders are electronically available in real time, such prospective predictors may have implications for clinical decision support. Therefore, prospective predictors (i.e., demographics, admission service, time to order a drug, route and dose information for each drug) were separately analyzed in the first random forest. Half of the data served as calibration set, half as validation set. Statistical computing was performed using the software R version 3.1.0 (R Foundation for Statistical Computing, Vienna, Austria).
Avec la fonction commentaires, nous proposons un espace pour un échange professionnel ouvert et critique. Celui-ci est ouvert à tous les abonné-e-s SHW Beta. Nous publions les commentaires tant qu’ils respectent nos lignes directrices.