1 Akgül C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B. Content-based image retrieval in radiology: current status and future. Digital Imaging. 2011;208‒22.
2 Kalpathy-Cramer J, García Seco de Herrera A, Demner-Fushman D, Antani S, et al. Evaluating performance of biomedical image retrieval system ‒ an overview of the medical image retrieval task at ImageCLEF 2004–2014. Computerized Medical Imaging and Graphics, 2014.
3 Uwimana E, Ruiz ME. Integrating an automatic classification method into the medical image retrieval process. In: AMIA Anual Symposium Proceedings, 2008.
4 http://imageclef.org/
5 http://www.visceral.eu/
6 Langs G, Müller H, Menze BH, Hanbury A. VISCERAL: Towards large data in medical imaging ‒ challenges and directions. In: MCBR-CDS MICCAI workshop, 2013.
7 García Seco de Herrera A, Kalpathy-Cramer J, Demner Fushman D, Antani S, Müller H. Overview of the ImageCLEF 2013 medical tasks. In: CLEF 2013 (Cross Language Evaluation Forum), Valencia, Spain, 2013.
8 Rahman MM, You D, Simpson MS, Antani SK, Demner-Fushman D, Thoma GR. Multimodal biomedical image retrieval using hierarchical classification and modality fusion. Int J Multimedia Information Retrieval. 2013;23:15973.
9 Kalpathy-Cramer J, Hersh W. Multimodal medical image retrieval: image categorization to improve search precision. In: International Conference on Multimedia Information Retrieval, New York, USA, 2010.
10 http://www.ncbi.nlm.nih.gov/pmc/
11 Markonis D, García Seco de Herrera A, Müller H. Semi-supervised learning for medical image classification. In: Conference and Labs of the Evaluation Forum (CLEF), Sheffield, UK, Submitted.
12 Good BM, Su AI. Crowdsourcing for Bioinformatics. Bioinformatics. 2013; 29(16):1925‒33.
13 Yu B, Willis M, Sun P. Wang J. Crowdsourcing parcipatory evaluation of medical pictograms using Amazon Mechanical Turk. J Med Internet Research. 2013;15(6).
14 Mitry D, Peto T, Hayat S, Morgan JE, Khaw K-T, Foster PJ. Crowdsourcing as a novel technique for retinal fundus photography classification: Analysis of images in the EPIC Norfolk Cohort on behalf of the UKBiobank Eye and Vision Consortium. PLoS One. 2013;8(8).
15 García Seco de Herrera A, Müller H. Fusion techniques in biomedical information retrieval. In: Information Fusion in Computer Vision for Concept Recognition, 2014, pp. 20‒28.
15 García Seco de Herrera A, Markonis D, Schaer R, Eggel I, Müller H. The medGIFT group in Image CLEF med 2013. In: CLEF 2013 (Cross Language Evaluation Forum), Valencia, Spain, 2013.
16 http://lucene.apache.org/
17 Foncobierta-Rodríguez A, Müller H. Ground truth generation in medical imaging: a crowdsourcing based interative approach. In: Workshop on Crowdsourcing for Multimedia, ACM Multimedia, Nara, Japan, 2012.
18 http://www.crowdflower.com/
19 Chhatkuli A, Markonis D, Foncubierta-Rodríguez A, Meriaudeau F, Müller H. Separating compound figures in journal articles to allow for subfigure classification. In: SPIE Medical Imaging, Orlando, FL, USA, 2013.
Avec la fonction commentaires, nous proposons un espace pour un échange professionnel ouvert et critique. Celui-ci est ouvert à tous les abonné-e-s SHW Beta. Nous publions les commentaires tant qu’ils respectent nos lignes directrices.